Advanced Topics in Condensed Matter (ATCOMA): Lecture 2

for physics students for VF (Vertiefungsfächer)

- "Bio/Medical Physics"
- "Nanostructures"
- "Condensed Matter"

for NanoScience students

Today:

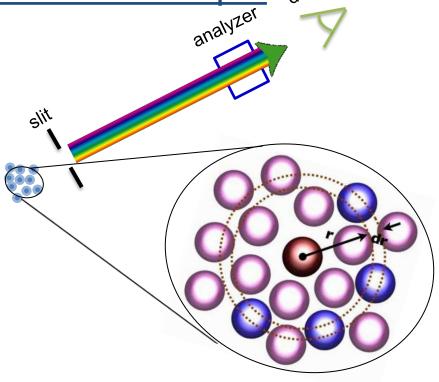
- Introduction and some general concepts
- Elementary scattering process

Later:

- Scattering from crystals
- Scattering from disordered systems / liquids
- Scattering from surfaces and interfaces
- General scattering theory: Correlations in space and time
- Miscellaneous topics, applications, and examples

2.1 Introduction and some general concepts

- understand scattering signal $I(q,\omega, ...)$
- based on properties of sample

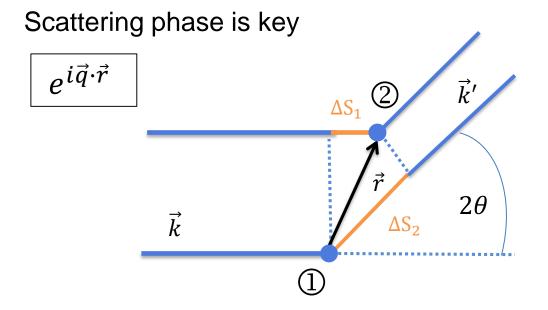


incident beam	
energy	$E = \hbar \omega_i$
wavelength	λ_i
wave vector	$\overrightarrow{k_i}$ (direction!)
flux	$I_0 \left[\frac{\text{quanta}}{\text{cm}^2 \text{s}} \right]$

 $\frac{\text{sample}}{\textit{N} \text{ particles at}}$ $\frac{\textit{N} \text{ positions } \overrightarrow{r_n}(t)}{\text{with cross}}$ $\text{section } \sigma_n$

 $\frac{\text{scattered beam}}{E_f = \hbar \omega_f}$ $\frac{\lambda_f}{\overrightarrow{k_f}}$ I

2.1 Introduction and some general concepts



$$\vec{q} = \vec{k}' - \vec{k}$$

$$|\vec{q}| = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$$

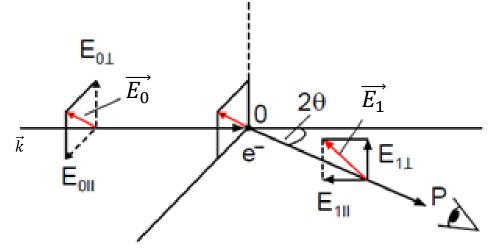
Roadmap

- understand elementary scattering process (individual atom)
- then "assemble" atoms to a complete sample
- then resulting signal from scattering from all atoms with

 $e^{i\vec{q}\cdot\vec{r}}$

2.2.1 X-rays

2.2.1 X-rays



an electromagnetic wave stimulates an electron to forced oscillations

force on charge

$$\vec{F} = e \overrightarrow{E_0}$$

acceleration

$$\vec{a} = \frac{\vec{F}}{m} = \frac{e\vec{E_0}}{m}$$

accelerated charge radiates

$$E_1 \sim a \frac{e}{r}$$

more precisely

$$E_1 = \frac{eE_0}{m} \left(\frac{\mu_0}{4\pi}\right) \frac{e}{r} \sin(\overrightarrow{OP}, \vec{a})$$

$$E_{1\perp} = \frac{\mu_0}{4\pi} \, \frac{e^2}{m} \, \frac{E_{0\perp}}{r}$$

$$E_{1\parallel} = \frac{\mu_0}{4\pi} \frac{e^2}{m} \frac{E_{0\parallel}}{r} \cos(2\theta)$$
(= 0 for $2\theta = 90^\circ$)

2.2.1 X-rays

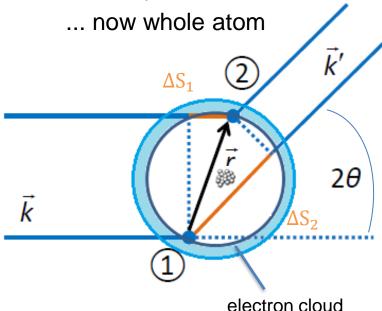
... with the classical electron radius

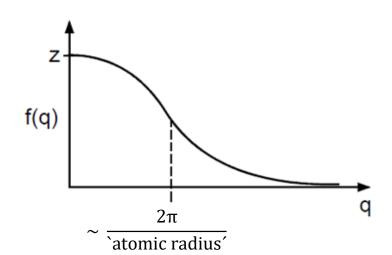
$$r_e = \frac{\mu_0}{4\pi} \frac{e^2}{m} = \frac{e^2}{mc^2} \frac{1}{4\pi\epsilon_0} = 2.814 \cdot 10^{-5} \,\text{Å}$$

... and, after angular integration, the total scattering cross section

$$\sigma_{total} = \frac{8\pi}{3} r_e^2 \approx 6 \cdot 10^{-9} \,\text{Å}^2$$

2.2.1 X-rays





... sum of the scattering contributions from all volume elements of the electron cloud with their respective phase

Total scattered wave

$$A = r_e \int \rho (\vec{r}) e^{i\vec{q}\vec{r}} d\vec{r}$$

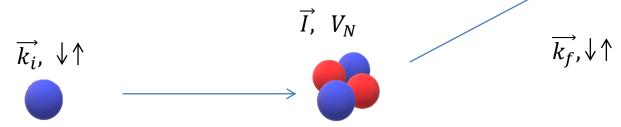
'atomic form factor'
(Fourier transform of the electron cloud)

$$f(\vec{q}) = \int \rho (\vec{r}) e^{i\vec{q}\vec{r}} d\vec{r}$$

$$f(q = 0) = \sum_{n=1}^{z} f_e^{(n)}(q = 0) = \sum_{n=1}^{z} 1 = Z$$
 valency

2.2.2 Neutrons

2.2.2 Neutrons



Scattering due to nuclear interaction using Fermi's Golden Rule:

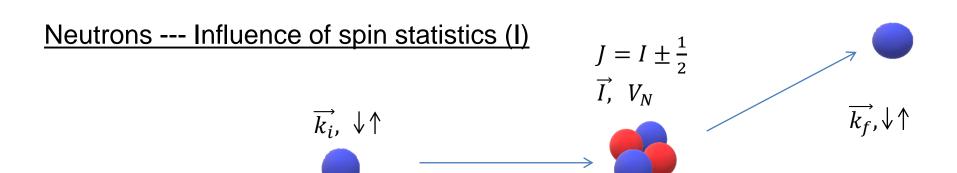
$$a = -\frac{m}{2\pi\hbar^2} \langle \Psi_f | V_N(\vec{r}) | \Psi_i \rangle = -\frac{m}{2\pi\hbar^2} \int V_N(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

Potential V_N of nucleus is negligible for distance $r>10^{-5} \text{Å}$; with $q=2\pi \text{Å}^{-1}$ we have qr<<1 and thus

$$e^{i\vec{q}\cdot\vec{r}} \approx 1.$$

The scattering amplitude then becomes q independent, i.e. constant

$$b \equiv -a = \frac{m}{2\pi\hbar^2} \int V_N(\vec{r}) d\vec{r}$$



spin of a neutron $s=\frac{1}{2}$ spin of nucleus I with (2I+1) orientations spin of total system (temporary compound = neutron + nucleus) $J=I\pm\frac{1}{2}$

Interaction V_N depends on relative spin orientation, resulting in different scattering lengths with different probability

$$b_{+}$$
 $w_{+}=rac{I+1}{2I+1}$ with probability b_{-} $w_{-}=rac{I}{2I+1}$

Example: Scattering of a neutron on a proton (hydrogen nucleus)

$$b_{+} = 10.4 \,\text{fm} \quad \text{n} \uparrow \text{p} \uparrow$$

 $b_{-} = -47.4 \,\text{fm} \quad \text{n} \uparrow \text{p} \downarrow$

Neutrons --- Influence of spin statistics (II)

Considering a beam of unpolarized neutrons and nuclei

$$n \ (\vec{k}_i \uparrow \downarrow) \longrightarrow (..., b_i, ..., b_j, ...)$$

The intensity will be given by the weighted mean of every spin configuration

$$I = \langle AA^* \rangle = \sum_{i,j} \langle b_i b_j \rangle e^{i\vec{q}\cdot(\vec{r}_i - \vec{r}_j)}$$

With unpolarized nuclear spins we obtain:

$$i \neq j$$
: $\langle b_i b_j \rangle = \langle b_i \rangle \langle b_j \rangle = \langle b \rangle^2$

$$i = j$$
: $\langle b_i b_i \rangle = \langle b^2 \rangle$

Rewriting

$$\langle b_i b_j \rangle = \langle b \rangle^2 + \delta_{ij} \left(\langle b^2 \rangle - \langle b \rangle^2 \right)$$

gives

$$I = \langle b \rangle^2 \sum_{i,j} e^{i\vec{q} \cdot (\vec{r}_i - \vec{r}_j)} + (\langle b^2 \rangle - \langle b \rangle^2) N$$

Coherent scattering Incoherent scattering

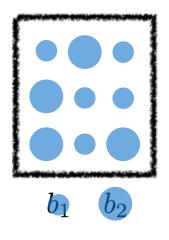
 $\sigma_{coh} = 4\pi \langle b \rangle^2$

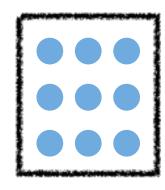
$$\sigma_{inc} = 4\pi(\langle b^2 \rangle - \langle b \rangle^2)$$

 $n (\vec{k}_f)$

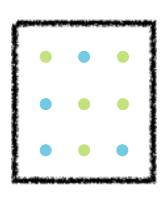
Neutrons --- Illustration of coherent and incoherent scattering

nuclear scattering ... decompose into two contributions:





 $b = \frac{b_1 + b_2}{2}$



 Δb

Coherent

→ Pair-correlation

Incoherent

→ Self-correlation

similarity to X-ray scattering from disordered alloy:

+ "diffuse scattering"("incoherent")

Neutrons --- Remarks on the scattering cross sections

- 1. Every isotope has both coherent and incoherent scattering (σ_{coh} and σ_{inc}) except when I=0 (e.g. ⁵⁸Ni)
- 2. The most famous example for the difference between two isotopes is hydrogen (I = 1/2) and deuterium (I = 1)

$$\sigma_{coh} \; ({\rm barn}) \quad \sigma_{inc} \; ({\rm barn})$$
H 2.0 80
D 5.6 2.0

The incoherent cross section of hydrogen is highest.

The big difference between H and D is used in organic matter for a high contrast (H/D substitution, deuteration of selected components)

Neutrons --- Remarks on the scattering cross sections

Column	Symbol	Unit	Quantity
1			element
2	Z		atomic number
3	Α		mass number
4	I(p)		spin (parity) of the nuclear ground state
5	С	%	natural abundance (For radioisotopes the half-life is given instead.)
6	b _c	fm	bound coherent scattering length
7	b,	fm	bound incoherent scattering length
8	s _c	barn1	bound coherent scattering cross section
9	s,	barn	bound incoherent scattering cross section
10	s_s	barn	total bound scattering cross section
11	S _a	barn	absorption cross section for 2200 m/s neutrons ²

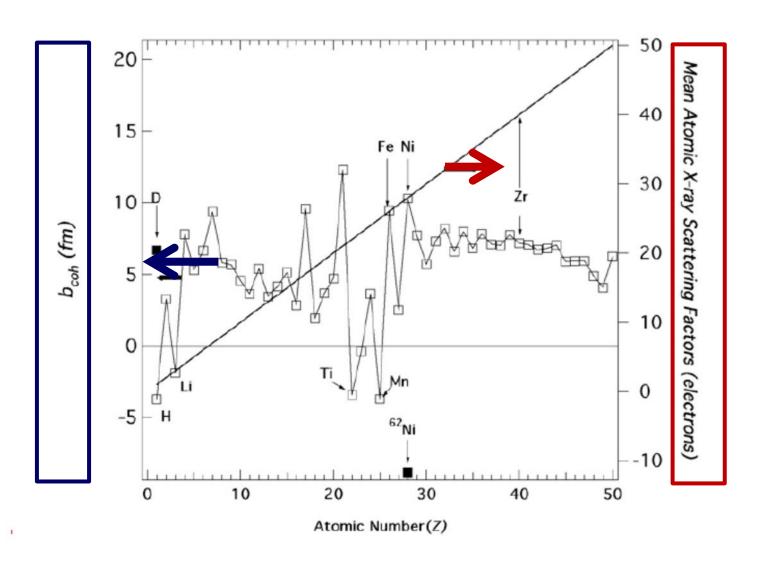
^{(1) 1} barn = 100 fm²

⁽²⁾ E = 25.30 meV, k = 3.494 Å-1, l = 1.798 Å

	Z	A	Ι(π)	с	b_c	b_i	σ_{c}	σ_{i}	σ_{s}	σ_{a}
Н	1				-3.7390(11)		1.7568(10)	80.26(6)	82.02(6)	0.3326(7)
		1	1/2(+)	99.985	-3.7406(11)	25.274(9)	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)
		2	1(+)	0.015	6.671(4)	4.04(3)	5.592(7)	2.05(3)	7.64(3)	0.000519(7
		3	1/2(+)	(12.32 a)	4.792(27)	-1.04(17)	2.89(3)	0.14(4)	3.03(5)	0
He	2				3.26(3)		1.34(2)	0	1.34(2)	0.00747(1)
		3	1/2(+)	0.00014	5.74(7)	-2.5(6)	4.42(10)	1.6(4)	6.0(4)	5333.(7.)
					-1.483(2)i	+2.568(3)i	` '	,		.,,
		4	0(+)	99.99986	3.26(3)	0	1.34(2)	0	1.34(2)	0
Li 3	3				-1.90(2)		0.454(10)	0.92(3)	1.37(3)	70.5(3)
		6	1(+)	7.5	2.00(11)	-1.89(10)	0.51(5)	0.46(5)	0.97(7)	940.(4.)
					-0.261(1)i	+0.26(1)/	, ,		,	(,
		7	3/2(-)	92.5	-2.22(2)	-2.49(5)	0.619(11)	0.78(3)	1.40(3)	0.0454(3)
Ве	4	9	3/2(-)	100	7.79(1)	0.12(3)	7.63(2)	0.0018(9)	7.63(2)	0.0076(8)

2.2.3 Comparison of neutrons and X-rays

For neutrons no monotonic dependence on Z as for X-rays



2.2.4 Comparison of neutrons and X-rays

Interactions different on the fundamental level, cross sections similarly weak.

Thus, many aspects of the scattering theory are similar for X-rays and neutrons, including kinematic theory, i.e. no multiple scattering, which is good.

This makes a common summer school particularly suitable!

It also makes it easier to cover both in this lecture and to use both in one's research.

Nevertheless, some differences <u>neutrons</u> vs. e.g.

- penetration depth typically still higher
- stronger interaction with light elements
- contrast variation by isotopic substitution
- incoherent cross section (used for QENS)
- high energy resolution
- magnetic scattering
- flux lower for neutrons

X-rays

slightly less for X-rays

absorption edges

possible, but less common different mechanism for X-rays

higher for synchrotrons